반응형

Inverse matrix of 2-by-2 matrix, 3-by-3 matrix, 4-by-4 matrix


Inverse matrix of 2 $\times$ 2 matrix

There exists an inverse matrix of A when detA=ad-bc0, and it is

Inverse matrix of 3 $\times$ 3 matrix

There exists an inverse matrix of A when
detA=a11a22a33+a21a32a13+a31a12a23-a11a32a23-a31a22a13-a21a12a33
0, and it is

Inverse matrix of 4 $\times$ 4 matrix

If

then there exists an inverse matrix of A, and it is

where

Inverse matrix of NxN matrix

From the analogy of the above formulae, the computation time of inverse matrix of NxN matrix will be O(N3N!). Computing inverse matrix with Gauss-Jordan method, the method using LU decomposition, and the method using SVD, will take a computation time of O(N3) (not confident). I will recommend not to use the formula for calculating inverse matrix of NxN matrix which N >= 4.

 

http://www.cg.info.hiroshima-cu.ac.jp/~miyazaki/knowledge/indexe.html

------------------------------------------------------------------------------------------------

http://download.intel.com/design/PentiumIII/sml/24504301.pdf

가우시안 제거법을 이용한 방법, 크래머의 법칙을 이용한 방법, SIMD를 이용해 정리한 소스가 있는 PDF 파일


반응형

'수학 > 선형대수학' 카테고리의 다른 글

그람 - 슈미트(Gram schmidt) 직교화  (0) 2017.12.21
반사 벡터  (0) 2017.12.15
벡터 - 내적  (0) 2017.12.12
프로그래머를 위한 선형대수 - 벡터와 공간  (0) 2017.10.29
벡터 - 외적  (3) 2012.08.22
Posted by msparkms
,