Inverse matrix of 2-by-2 matrix, 3-by-3 matrix, 4-by-4 matrix
Inverse matrix of 2 $\times$ 2 matrix
There exists an inverse matrix of A when detA=ad-bc0, and it is
Inverse matrix of 3 $\times$ 3 matrix
There exists an inverse matrix of A when
detA=a11a22a33+a21a32a13+a31a12a23-a11a32a23-a31a22a13-a21a12a33
0, and it is
Inverse matrix of 4 $\times$ 4 matrix
If
then there exists an inverse matrix of A, and it is
where
Inverse matrix of NxN matrix
From the analogy of the above formulae, the computation time of inverse matrix of NxN matrix will be O(N3N!). Computing inverse matrix with Gauss-Jordan method, the method using LU decomposition, and the method using SVD, will take a computation time of O(N3) (not confident). I will recommend not to use the formula for calculating inverse matrix of NxN matrix which N >= 4.
http://www.cg.info.hiroshima-cu.ac.jp/~miyazaki/knowledge/indexe.html
------------------------------------------------------------------------------------------------http://download.intel.com/design/PentiumIII/sml/24504301.pdf
가우시안 제거법을 이용한 방법, 크래머의 법칙을 이용한 방법, SIMD를 이용해 정리한 소스가 있는 PDF 파일
'수학 > 선형대수학' 카테고리의 다른 글
그람 - 슈미트(Gram schmidt) 직교화 (0) | 2017.12.21 |
---|---|
반사 벡터 (0) | 2017.12.15 |
벡터 - 내적 (0) | 2017.12.12 |
프로그래머를 위한 선형대수 - 벡터와 공간 (0) | 2017.10.29 |
벡터 - 외적 (3) | 2012.08.22 |